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Streszczenie

Celem niniejszej pracy jest estymacja modelu DSGE-VAR na podstawie sześciu zmiennych makroeko-

nomicznych dla Polski. Zastosowany przy tym model DSGE jest modelem średniej wielkości, a jego

specyfikacja w dużej mierze oparta jest na pracy Del Negro et al. (2007). Model DSGE-VAR umoż-

liwia wykorzystanie zalet zarówno spójnych teoretycznie modeli strukturalnych, jak i modeli szeregów

czasowych, charakteryzujących się znacznym stopniem dopasowania do danych empirycznych. Dodat-

kowo, estymacja bayesowska pozwala na uwzględnienie przekonań a priori dotyczących rozkładów pa-

rametrów modelu, co ma szczególne znaczenie w przypadku krótkich szeregów czasowych dla Polski.

Ponadto uzyskane wyniki pozwalają na ocenę stopnia nieprawidłowości w specyfikacji modelu DSGE.

Słowa kluczowe: DSGE-VAR, modele DSGE, estymacja bayesowska, ocena modeli.



Abstract

The aim of this paper is to perform the estimation of a DSGE-VARmodel using the six key macroeconomic

variables for Poland, with the medium-scale DSGE model specified similarly to Del Negro et al. (2007).

The DSGE-VAR approach enables to combine the advantages of the theoretically consistent structural

models with those of the empirical ones, characterised by the substantial degree of data fit. Moreover, the

Bayesian estimation provides a convenient framework to incorporate initial beliefs about the model param-

eters into the estimation procedure, which seems to be particularly advantageous in the case of rather short

time series for Poland. Finally, the obtained estimates allow to assess the extend of the DSGE model mis-

specification.

Keywords: DSGE-VAR, DSGE models, Bayesian estimation, model evaluation.
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Chapter 1

Introduction

For a long time, macroeconomic modelling has been faced with a tradeoff between theoretical coherence

and data fit (see Sims 2008). On the one hand, micro-founded models, with understandable interpretation

and clear implications, often did not explain the observed phenomena to a satisfactory degree. On the

other hand, the large-scale macroeconometric models, able to track and forecast time series with a high

precision, failed to provide a clarification of the economy structure or identification of shocks hitting the

system.

Since the pioneering paper of Kydland and Prescott (1982), the dynamic stochastic general equilibrium

(DSGE) models have been the subject of interest for both, practitioners and theorists. The ability

of such structural models to detect the linkages between economic variables and to identify stochastic

disturbances makes them a valuable tool in policy making. Moreover, the recent improvements of their

empirical performance due to the work of Smets and Wouters (2003) have lead to increasing credibility of

this class of models in monetary policy analysis. Nevertheless, the extend of data explanation provided

by theoretical models will almost certainly be lower then in the case of atheoretical ones. Especially, the

vector autoregressive (VAR) models, first introduced by Sims (1980), are renown for their profound power

to capture the dynamic properties of the economic system, and therefore have been extensively applied by

practitioners. The less restrictive specifications of empirical models are often a considerable advantage

when compared with the DSGE models, which, even simple ones, impose very strong restrictions on

actual time series. Unfortunately, VARs are often high-dimensional and densely parameterised, which

poses estimation difficulties when dealing with scarcity of data. Precise inference, basing solely on the

sample information, is in many cases impossible.

To deal with these problem, Bayesian inference is being applied in extending number of macroeconomic

papers1. The Bayesian approach consists in updating former beliefs about parameters distribution with

information coming from the data using the straightforward Bayes Theorem, allowing therefore for com-

bining different sources of information. In Bayesian DSGE model estimation, prior distribution allows to

incorporate knowledge about parameters, which are hardly identifiable from the aggregate data, wheres in
1According to Herbst (2010), in period 2005-2010 70% of all DSGE models, published in top eight economic journals,

were estimated using Bayesian methods
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VAR estimation, the role of priors is to reduce model dimensionality and variance of parameter estimates.

Consequently, Bayesian methods make it possible to overcome the main obstacles of both modelling ap-

proaches.

A logical implication is therefore to combine the advantages of theoretical and empirical models through

mixing them up in Bayesian fashion. Such a hybrid model, constructed by adding priors based on a

DSGE model to a structural VAR, is likely to fit the data better then a DSGE model alone and, at

the same time, to avoid the identification problems. This approach has become particularly popular

since the influential paper of Del Negro and Schorfheide (2004), who reported that “the resulting [DSGE-

VAR] model is competitive with standard benchmarks in terms of forecasting, and can be used for policy

analysis”. However, the empirical performance is not the only advantage of DSGE-VAR models: as

presented in Del Negro et al. (2007), they can be successfully employed as a metric for assessing the

degree of DSGE models misspecifications. Since one can control for the weight put on the DSGE model

based prior, the estimated value of the tightness parameter delivers the answer to the question “how good

is what you’ve got?”2, i.e. indicates, how plausible the restrictions implied by the structural model are.

No wonder therefore, that DSGE-VARs have been in centre of attention of both, academics and policy

makers3.

The aim of this paper is to construct and estimate a DSGE-VAR model for the Polish economy. As an

underlying DSGE model, a modified version of the Smets and Wouters (2003) model (thereafter SW)

will be used, which is renown for its excellent performance in terms of tracking and forecasting euro area

time series. However, modelling the Polish economy in SW spirit does not necessarily hold the promise

of achieving equally good outcomes as the cited authors. The degree of model misspecifications is likely

to be higher owing to the specificity of the Polish transition economy on the one hand, and, on the other

hand, the close-economy approach, which seems to be less suitable for the Polish economy than for the

euro area. Nevertheless, since SW is nowadays considered as a benchmark for macro-modelling, and the

presented DSGE-VAR approach allows for evaluating the degree of potential misspecifiations, it has been

decided to follow SW approach.

The remainder of this paper is organised as follows. Chapter 2 explains the DSGE-VAR model and tackles

with the issues related to it, i.e. identification problem and MCMC techniques. Chapter 3 presents the

DSGE model and drafts the methods used to solve it. Chapter 4 reports on empirical analysis of the

DSGE-VAR model. Chapter 5 deals with model evaluation. Finally, chapter 6 concludes and presents a

brief outlook for further research.

2Which is the title of Del Negro and Schorfheide (2006) paper.
3Recent publications on this topic include application of DSGE-VAR model to macroeconomic data in the US (Adjemian

et al. 2008), Japan (Watanabe 2009), New Zealand (Lees et al. 2007) or Singapore (Chow and McNelis 2010).
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Chapter 2

DSGE-VAR model

The basic idea of a DSGE-VAR model is to incorporate additional information from a theoretical DSGE

model to an econometrical VAR model. It is done within the Bayesian framework, where the prior

assumption on the distribution of the VAR parameters is updated with the information coming from the

data to obtain the posterior distribution of the VAR parameters. The key feature of DSGE-VAR approach

consists in the way in which the prior distribution is constructed: it is derived from the observations

generated from the DSGE model. Essentially, this approach leads to an estimation of the VAR based on

a mixed sample of artificial and actual observations.

The starting point for the estimation is an unrestricted VAR model of order p. Let yt be a n×1 vector of

observed variables and θ be a vector of DSGE model parameters. A VAR(p) specification for yt is given

by:

yt = Φ0 +

p∑
i=1

Φiyt−i + ut, (2.1)

where ut is a vector of reduced-form innovations (one-step-ahead forecast errors), assumed to follow a

serially independent multivariate normal distribution conditional on past information: ut ∼ N (0,Σu). Φ0

stands for a n× 1 vector of constants and Φi stands for n× n matrix of model coefficients, ∀i = 1, . . . , p.

Following Schorfheide (2010), the DSGE-VAR approach can be understood as hierarchical hybrid model,

which leads a nested structure of the form:

p(Y,Φ,Σu, θ) = p(Y |Φ,Σu)p(Φ,Σu|θ)p(θ), (2.2)

where p(θ) stands for the prior for the DSGE parameters, p(Y |Φ,Σu) is the VAR likelihood function

and p(Φ,Σu|θ) denotes the prior for the VAR coefficients conditional on the DSGE model parameters.

Therefore, by combining two sources of information, the model (generating the prior distribution) and

the data (summarised by the likelihood function), the DSGE-VAR approach relaxes the tight theoretical

restrictions of the DSGE model.

11



2.1 The Likelihood function

The model (2.1) can be expressed in a compact form:

Y = XΦ + U, (2.3)

where Y denotes the T × n matrix with rows y′t, X stands for the T × k matrix with rows x′t =

[1, y′t−1, . . . , y
′
t−p], where k = 1 + np, Φ = [Φ0,Φ1, . . . ,Φp]

′ is the k × n matrix and U is the T × n

matrix with rows u′t. T stands for the sample size. The likelihood function of the VAR, conditional on

observations y1−p, . . . , y0, is given by:

p(Y |Φ,Σu) ∝ |Σu|−T/2 exp

{
−1

2
tr[Σ−1

u (Y −XΦ)′(Y −XΦ)]

}
. (2.4)

Following Del Negro and Schorfheide (2004), since the DSGE models do not have a finite-order VAR

representation, the VAR(p) can be interpreted as an approximation to the VMA representation of the

DSGE model. Obviously, the higher p, the better accuracy. However, increasing of the VAR order raises

the number of parameters, which causes estimation difficulties. Therefore, to tackle the problem of too

many parameters, the idea of “shrinkage estimators” has been developed. In the DSGE-VAR approach

the DSGE model imposes tight restrictions on the VAR representation of yt through a prior distribution

obtained from the former model. According to An and Schorfheide (2006), the role of the prior for the

VAR is reduction of the dimensionality of the econometric model - which is noticeably different from the

role of prior in the DSGE model estimations.

2.2 Prior Distributions

To estimate the VAR parameters in a Bayesian fashion, the assumption concerning prior distribution for

Φ and Σu is needed. In the DSGE-VAR model it is derived from the DSGE model and the joint prior

for the VAR and for the DSGE model parameters is constructed. The method presented in this paper,

based on Del Negro and Schorfheide (2004), Del Negro et al. (2007) and Adjemian et al. (2008), can be

summarised as follows: choose a prior for the DSGE model parameters θ; for a given θ obtain a prior for

the VAR coefficients with the use of the mapping from θ to Φ and Σu; multiply both priors to obtain a

joint prior. Therefore, the joint prior has a hierarchical structure:

p(Φ,Σu, θ) = p(Φ,Σu|θ)p(θ). (2.5)

The issue is how to construct the mentioned mapping from the DSGE model parameters to the VAR pa-

rameters, i.e. how to find p(Φ,Σu|θ). Following the previous literature, it can be achieved by augmenting

the actual observations with the artificial data generated from the DSGE model and estimating the VAR

model on the mixed sample of the actual and artificial data. The ratio of the latter over the former is

given by the hyperparameter λ, which therefore can be understood as a weight of the prior relative to

12



the sample or the prior tightness. The continuum of the DSGE-VAR(λ) models has an unrestricted VAR

at the one extreme, for λ = 0, and VAR representation of the DSGE model at the other extreme, for

λ =∞.

In should be emphasised, that the hyperparameter λ plays a crucial role in the empirical performance

of the DSGE-VAR(λ) model, since it determines the tightness of the prior for the VAR parameters and

therefore controls the cross-coefficient restrictions imposed by the DSGE model the VAR. In order to

allow its direct estimation as another parameter, following Adjemian et al. (2008), the prior distribution

for λ is defined1. Because the initial beliefs concerning the optimal size of the generated sample suggest

the presence of the DSGE model misspecifications, which are likely to manifest themselves in a low value

of λ estimate, it is assumed that λ ∼ U(0, 2). Moreover, it is assumed that λ is independent from θ,

which will allow for factorisation of p(θ, λ) into p(θ)p(λ).

The idea to form the initial beliefs concerning the VAR parameters on the basis of the random sample

obtained from the DSGE model is reasonable and sounds convincing. However, if the prior would actu-

ally be constructed on the basis of the randomly generated observations, it would cause the stochastic

distribution of the prior2. Hence, the artificial sample moments should be replaced with their expected

values:

Γ∗y,y(θ) = Eθ[yty′t], Γ∗x,y(θ) = Eθ[xty′t], Γ∗x,x(θ) = Eθ[xtx′t], (2.6)

which can be computed analytically from the state-space representation of the DSGE model3. Formally,

the entire procedure described above can be characterised as follows. The initial diffuse prior for the

VAR parameters

p(Φ,Σu) ∝ |Σu|−(n+1)/2 (2.7)

is updated with the information obtained from the generated sample according to the formula:

p(Φ,Σu|θ, λ) =
p(θ, λ|Φ,Σu)p(Φ,Σu)

p(θ, λ)
∝ p(θ, λ|Φ,Σu)p(Φ,Σu). (2.8)

Taking into consideration that the sample of artificial observations contains the information about

the deep parameters θ and λ, the expression p(θ, λ|Φ,Σu) in the above equation can be replaced by

p(Y ∗(θ, λ)|Φ,Σu), which is the likelihood function of the generated sample, giving:

p(Φ,Σu|θ, λ) ∝ p(Y ∗(θ, λ)|Φ,Σu)p(Φ,Σu). (2.9)

Suppose that the actual observations are augmented with T ∗ = λT artificial ones, denoted Y ∗, generated

from the DSGE model conditional on parameter vector θ. Then likelihood of the artificial sample has

1This is a crucially different approach to the one developed by Del Negro and Schorfheide (2003), where a value of λ was
chosen over a finite grid to maximise the marginal data density of the DSGE-VAR(λ).

2In repeated application of the procedure the prior would display a stochastic variance.
3It can be done due to the assumed weak stationarity of yt.
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the form:

p(Y ∗(θ, λ)|Φ,Σu) ∝ |Σu|−λT/2 exp

{
−1

2
tr[Σ−1

u (Y ∗ −X∗Φ)′(Y ∗ −X∗Φ)]

}
. (2.10)

Putting together (2.6), (2.7), (2.9) and (2.10) yields the formula for the VAR parameters prior, given the

DSGE model parameters:

p(Φ,Σu|θ, λ) = c−1(θ)|Σu|−(λT+n+1)/2 exp

{
−1

2
tr[λTΣ−1

u (Γ∗yy(θ)− Φ′Γ∗xy(θ)− Γ∗yx(θ)Φ + Φ′Γ∗xx(θ)Φ)]

}
,

(2.11)

where c(θ) is a normalising constant since the density has to integrate to one. Moreover, to ensure that

(2.11) is nondegenerate and proper, Γ∗xx(θ) should be invertible and λ ≥ k + n. From (2.11) follows

that the prior density for the VAR coefficients, conditional on the DSGE model parameters, is of the

Inverse-Wishart-Normal form, which is a conjugate prior for the multivariate normal likelihood function

with mean and covariance taken as parameters - which is the case for (2.4). Thus,

Σu|θ, λ ∝ IW (T ∗Σ∗u(θ), T ∗ − k, n) ,

Φ|Σu, θ, λ ∝ N
(
Φ∗(θ),Σu � (T ∗Γ∗xx(θ))−1

)
,

(2.12)

where:
Φ∗(θ) = Γ∗−1

xx (θ)Γ∗xy(θ),

Σ∗u(θ) = Γ∗yy(θ)− Γ∗yx(θ)Γ∗−1
xx (θ)Γ∗xy(θ).

(2.13)

The functions Φ∗(θ) and Σ∗u(θ) are called restriction functions and denote the VAR approximation of

the DSGE model, at which the prior (2.11) is centred. Essentially, they indicate the mapping from the

DSGE to VAR parameters. The VAR with the coefficient matrix Φ∗(θ) and forecast error covariance

matrix Σ∗u(θ) minimises the one-step-ahead quadratic forecast loss among the p-th order VAR models -

for a given DSGE parameters θ.

Finally, defining the prior distributions for the DSGE model structural parameters , p(θ) and p(λ), allows

to specify the prior distribution of the DSGE-VAR model in the following nested way:

p(Φ,Σu, θ, λ) = p(Φ,Σu|θ, λ)p(θ)p(λ). (2.14)

2.3 Posterior Distribution

The Bayes theorem implies that the posterior density is given by the product of the likelihood function

and the prior density, which combined with the hierarchical structure of the model leads to the following

formula for the posterior:

p(Φ,Σu, θ, λ|Y ) ∝ p(Y |Φ,Σu)p(Φ,Σu|θ, λ)p(θ)p(λ). (2.15)

However, one can make use of the fact that (2.11) is a conjugate prior for (2.4) - which leads to the

posterior for the VAR parameters given the DSGE model parameters of the known, Inverse-Wishart-
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Normal form - and factorise (2.15) into:

p(Φ,Σu, θ, λ|Y ) = p(Φ,Σu|θ, λ, Y )p(θ, λ|Y ). (2.16)

Then the first term of the right-hand-side product is given by:

Σu|θ, λ, Y ∝ IW
(

(1 + λ)T Σ̃u(θ, λ), (1 + λ)T − k, n
)
,

Φ|Σu, θ, λ, Y ∝ N
(

Φ̃(θ, λ),Σu �
1

T
(Γxx + λΓ∗xx(θ, λ))−1

)
,

(2.17)

where Φ̃ and Σ̃u are the maximum-likelihood estimates of Φ and Σu, respectively, based on the mixed

sample:

Φ̃(θ, λ) = (Γxx + λΓ∗xx(θ))−1(Γxy + λΓ∗xy),

Σ̃u(θ, λ) =
1

1 + λ

[
(Γyy + λΓ∗yy(θ))− (Γyx + λΓ∗yx(θ))(Γxx + λΓ∗xx(θ))−1(Γxy + λΓ∗xy(θ))

]
.

(2.18)

In coherence with the notation used in (2.6), Γyy, Γyx and Γxx stand for the moments of the actual

sample.

Obviously, the higher λ, the larger weight of the prior, the closer the posterior mean of the VAR parameters

conditional on θ is to the restriction functions Φ∗ and Σ∗u, i.e. Φ̃(θ)
λ→∞−−−−→ Φ∗(θ) and Σ̃u(θ)

λ→∞−−−−→ 0.

Thus, with the increase of the artificial sample size the VAR parameter estimates stay closer to the

restrictions implied by the DSGE model. On the other hand, λ = 0 means taking the OLS estimate of

the Φ as the posterior mean of Φ.

The second expression in (2.16), the posterior density of θ, is more cumbersome and in order to sample

from it numerical methods have to be used. It can be expressed as:

p(θ, λ|Y ) ∝ p(Y |θ, λ)p(θ)p(λ), (2.19)

i.e. proportion to the product of the likelihood function p(Y |θ, λ) and the prior densities of θ and λ. The

likelihood of θ and λ can be written as:

p(Y |θ, λ) =

∫
p(Y |Φ,Σu)p(Φ,Σu|θ, λ)d(Φ,Σu). (2.20)

or

p(Y |θ, λ) =
p(Y |Φ,Σu)p(Φ,Σu|θ, λ)

p(Φ,Σu|Y )
(2.21)

where the right-hand term in (2.21) can be expressed by a closed-form formula4. The prior density for θ

is generated from the well-known densities and will be explained in further part of the paper.

4Del Negro and Schorfheide (2004)), page 34.
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2.4 Identification Problem

One of the main tasks of the macroeconometrical modelling is to find the linkages between variables

and therefore to detect the impact of various shocks on the macroeconomic variables. However, the

estimation of the reduced-form VAR, as in (2.1), does not deliver information concerning the structure of

the disturbances5. Consequently, to identify dynamic responses of separate variables to a given shock, the

mapping between structural shocks εt and the reduced-form forecast errors ut needs to be constructed,

i.e. on the basis of estimated reduced-form VAR one needs to identify the underlying orthogonal shocks

εt. Yet, this is a difficult undertaking and “even though several procedures have been proposed in the

literature, shock identification remains a highly controversial issue" (Liu and Theodoridis (2010)).

In practice, the recursive method described by Sims (1980) is being commonly used. The relationship

between ut and εt is characterised as follows:

ut = ΣtrΩεt, (2.22)

where Ω is an orthonormal matrix (called rotation matrix) and Σtr is the Cholesky decomposition of Σu.

The matrix Ω provides the link between reduced-from and structural shock and therefore plays a key

role in the identification procedure: in order to obtain impulse response functions (IRF) to unanticipated

disturbances, it is necessary to define Ω. However, Ω is not identifiable from the data, i.e. the likelihood

function of the VAR depends only on Σu = ΣtrΣ
′
u and is invariant to Ω6, which leads to the identifi-

cation problem. The identification strategy developed by Del Negro and Schorfheide (2004), an natural

approach in the DSGE-VAR framework, is based on the DSGE model. Ω is derived from the state-space

representation of the DSGE model and should ensure that the IRFs from the DSGE model match those

from the DSGE-VAR model - in the case of no misspecification.

The starting point for the procedure is to note that the DSGE model, as a structural one, is identified,

which means that for each θ there exists a unique matrix A(θ) describing the contemporaneous effect

of εt on yt. A(θ) is obtained from the state-space representation and can be factorised with the QR

decomposition as follows: (
∂yt
∂ε′t

)
DSGE

= A(θ) = Σ∗tr(θ)Ω
∗(θ), (2.23)

where Σ∗tr(θ) is a lower triangular matrix and Ω∗(θ) is an orthonormal matrix. On the other hand, the

initial impact of εt on the endogenous variables in the VAR is given by:

(
∂yt
∂ε′t

)
V AR

= ΣtrΩ. (2.24)

The VAR identification involves replacing Ω in (2.24) with Ω∗(θ) from (2.23), while the Cholesky de-

composition of Σu is maintained. The implementation of the procedure takes place within the MCMC

algorithm (which samples Φ, Σu and θ from (2.16)) and consists of the following steps:

5This is because the errors in the ut are correlated with each other.
6Since ΣtrΩΩ

′
Σ
′
tr = ΣtrΣ

′
tr = Σu.
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1. Construct a MA representation of yt in terms of ut using Φ.

2. Compute Σtr.

3. Calculate Ω = Ω∗(θ) and construct a MA representation of yt in terms of εt.

As stated in Del Negro et al. (2007), “combining Ω∗(θ) with the reduced-form VAR approximation of

the DSGE model results in a structural VAR that mimics the impulse response dynamics of the DSGE

model”. Therefore, using of Ω∗(θ) facilitates turning of the reduced-form DSGE-VAR into the identified

DSGE-VAR.

In spite of coherence of the presented method, it is not free from substantial inconveniences. Firstly,

the DSGE model needs to be fully stochastically specified to allow for employing the rotation matrix

from it to identify the VAR. Secondly, even though it is possible to control for the prior weight of the

artificial observations, one cannot control for the prior weight of the implied dynamics of the DSGE

model. Thirdly, according to Sims (2008), the same identification problem as in the case of the standard

VAR arises in the DSGE-VAR approach, which causes difficulties in putting DSGE-VARs into practise.

The key issue is that the VAR representation to the DSGE model is only an approximation and therefore

using the DSGE rotation matrix does not yield the same covariance matrix as the DSGE-VAR7.

2.5 MCMC Algorithm

The Bayesian inference about the DSGE-VAR model parameters causes the necessity of dealing with

multidimensional and highly nonlinear probability distributions, which usually do not have a closed-form

representation (as in the case of p(θ, λ|Y )) and thus have to be approximated numerically, i.e. by random

draws from them. Since the size of the θ is usually large and initially little is know about the posterior

it is difficult to generate independent draws from the posterior. To tackle this problem, the posterior

is simulated with the Markov Chain Monte Carlo (MCMC) techniques, where a Markovian sequence

{(θ, λ)i}Ni=1 is constructed, which, by the ergodic theorem, converges to the desired posterior density as

N becomes large. The most popular MCMC technique is the Metropolis-Hastings (MH) algorithm, which

can be described as follows8:

1. Choose the initial value θ0 and set n = 1.

2. While n < N do:

2.1. Draw a proposal θ∗ from q(·|θn−1).

2.2. Calculate an acceptance ratio:

α :=
p(θ∗|Y )

p(θn−1|Y )

q(θn−1|θ∗)
q(θ∗|θn−1)

.

7Liu and K. (2010), page 7.
8For simplicity, in the following pseudocode λ is assumed to be a part of the vector of parameters θ.
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2.3. θn :=

 θ∗ with probability min{α, 1},

θn−1 with probability 1−min{α, 1}.

The distribution q(·|θn) in (2.1.) is the proposal distribution, and one samples from it in order to avoid

drawing from the complex distribution of interest, p(θn|Y ). It is also referred to as transition kernel,

since it generates an underlying Markov Chain. Therefore its support must contain the support of the

posterior. The first term on the right hand side in (2.2.) is the likelihood ratio between the proposed

sample θ∗ and the previous sample θn−1. The second term stands for the ratio of the proposal density in

two directions, from θn−1 to θ∗ and from θ∗ to θn−1, and is equal to 1 for symmetric proposal densities.

The general idea of the MH algorithm is straightforward, however, two crucial issues arise when it comes

to its practical implementation. Firstly, how to choose the starting value θ0. Secondly, what the exact

specification of the proposal distribution q(·|θ) should be like. The former question is usually tackled

with the numerical optimisation of the log posterior density and then setting θ0 equal to the computed

mode. The latter case is less routine, because there is no universal solution which works out in each

application. On the one hand, transition kernel ought to have a simple form to facilitate drawing from it;

on the other hand, it should approximate the posterior well - at least locally. For the DSGE models, the

most common MH algorithm is the random walk Metropolis-Hastings (RWMH) algorithm, first proposed

by Shorfheide (2000)9. The proposal takes here the form of:

θ∗ ∼ θn−1 + ε, where ε ∼ N (0,−cH−1),

and H is the Hessian of the log posterior evaluated at the mode and c is an adjustment coefficient.

FollowingAn and Schorfheide (2007) and Adjemian et al. (2008), the complete MCMC algorithm for the

DSGE-VAR estimation can be presented as follows:

1. Use the RWMH algorithm to generate draws (θ, λ)n from the posterior distribution p(θ, λ|Y ).

2. For each draw (θ, λ)n:

1. sample Φn and Σn from p(Φ,Σu|θ, λ, Y ),

2. compute Ωn.

The practical implementation of the whole procedure described above can be carried out using the Dynare

packet (Adjemian et al., 2011).

9According to Herbst (2010), the RWMH algorithm is used in 95% of papers where Bayesian interference is applied.
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Chapter 3

DSGE Model

3.1 The Model

The model presented in this paper is based mainly on work of Del Negro et al. (2007), which is in turn a

modified version of the model developed by Smets and Wouters (2003). However, several simplifications

to the standard framework have been introduced: mark-up shocks have been removed, price indexation

has been changed to purely backward-looking, the utilisation of capital has been omitted. Moreover, the

government fiscal policy function has been replaced with an exogenous spending shock.

3.1.1 Household Sector

There is a continuum of households in the economy, indexed by j ∈ [0, 1], each of which supplies dif-

ferentiated type of labour. Besides that fact, the households are homogenous, i.e. they have the same

preferences and endowments.

The j-th household maximises its intertemporal expected utility:

Et
∞∑
s=0

βsUt+s(j),

where Ut(j) is an instantaneous utility function of the form:

Ut(j) = εd,t

[
log(Ct(j)− hCt−1(j))− εl,t

1 + ϕ
Lt(j)

1+ϕ + εm,t log

(
Mt(j)

ZtPt

)]
.

Therefore, per period utility is a functions of consumption bundle Ct(j), labour effort Lt(j) and real

money holdings Mt(j)
ZtPt

1. Et denotes expectation operator conditional on information available at time t; β

is the discount factor; h represents the external degree of habit persistence; ϕ is the inverse of the Frisch

elasticity of labour supply (elasticity of work effort with respect to the real wage).

1In order to make real money demand stationary, real money holdings are deflated by the stochastic trend growth of the
economy.
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There are three shock shifting the period utility. First, εd,t, affects the intertemporal preferences, i.e.

the household’s willingness to substitute over time (it is a demand shock, which scales the overall period

utility). Second, εl,t, represents the labour supply shock and captures the movements in the observed

wedge in the first order condition relating consumption and labour. Third, εm,t, is a shock to preferences

to the money holdings. For simplicity, it is postulated that all these shocks follow an AR(1) processes in

logs:

log εd,t = ρd log εd,t−1 + σdµd,t, where µd,t ∼ N (0, 1),

log εl,t = ρl log εl,t−1 + σlµl,t, where µl,t ∼ N (0, 1),

log εm,t = ρm log εm,t−1 + σmµm,t, where µm,t∼ N (0, 1).

The household’s intertemporal nominal budget constraint is given by:

PtCt(j) + PtIt(j) +Mt(j) +Bt(j) =

= Rt−1Bt−1(j) +Mt−1(j) + Πt +WtLt +RktKt(j),
(3.1)

where It(j) denotes investment, Mt(j) - nominal money holdings, Bt(j) - holdings of government bonds,

Πt - dividend from ownership of the imperfect competitive intermediate firms, Kt(j) - physical capital

rented by the household to the firms. Pt stands for the price of the composite good (which can be used

either for consumption or for investment), Wt(j) - for nominal wage earned by the j-th household, Rt -

for the gross nominal interest rate on government bonds and Rkt - for the rate of return on rented capital.

Owing to the fact that households are exclusive owners of the capital in the economy, they make in-

vestment decisions affecting the size of the capital stock. The capital is being accumulated according

to:

Kt+1 = (1− δ)Kt + εi,tF (It, It−1).

where δ is the depreciation rate and F (It, It−1) is a function, which turns investment into capital. Fol-

lowing Christiano et al. (2005), it is assumed that the specification for F is given by:

F (It, It−1) =

(
1− S

(
It
It−1

))
It,

where S is an investment effectiveness function, representing the cost of investment adjusting. It equals

zero in the steady state, where the growth rate of investment is constant and equals eγ . Moreover, it

is assumed, that the first derivative of S is equal to zero in the equilibrium, while its second derivative

is positive for all arguments. It implies that the adjustment costs depend only on the curvature of the

effectiveness function. Formally:

S(eγ) = S′(eγ) = 0, S′′(·) > 0 and S′′(eγ) ≡ S′′.

Capital accumulation is shifted by the investment-specific technological progress, εi,t, which follows the
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exogenous process:

log εi,t = ρi log εi,t−1 + σiµi,t, where µi,t ∼ N (0, 1).

This progress alters the rate of transformation between consumption and investment goods and can be

interpreted as a stochastic disturbance to the price of investment relative to consumption.

It is assumed that there exist a complete set of Arrow-Debreu securities, contingent on idiosyncratic and

aggregate states of nature. However, they are not explicitly included in the budget constraint2. Such an

assumption implies that the Lagrange multipliers associated with the budget constraint (3.1) must be

equal for all households across all periods and all states of nature. Thus, in the equilibrium, households

decisions regarding Ct(j), Mt(j) and It(j) will be identical. Therefore, the presence of the complete

markets allows for omitting the j index. However, the choice of Lt(j) will differ across the households

due to wage rigidities, which will be introduced in the next section.

Moreover, to rule out the Ponzi schemes, the usual transversality condition on asset accumulation is

assumed.

3.1.2 Labour Market

The labour supply is individualised and household-specific, therefore there is a need to aggregate it into

composite labour services, which could be used by the intermediate good producers. This is the task of

so called “labour packers”, perfectly competitive firms, which hire labour from the households, combine it

into the aggregate Lt and resell it to the intermediate good producers. Aggregation takes place according

to the Dixit-Stiglitz formula:

Lt =

[∫ 1

0

Lt(j)
φw−1
φw dj

] φw
φw−1

,

where φw is substitution elasticity among labour varieties. Given the global labour demand Lt, from

labour packers’ first-order conditions follows that the demand for the j-th type of labour services is equal

to:

Lt(j) =

[
Wt(j)

Wt

]−φw
Lt. (3.2)

Taking into consideration zero-profit condition of the labour packers, one obtains the price of the aggre-

gated labour services:

Wt =

[∫ 1

0

Wt(j)
1−φwdj

] 1
1−φw

Wage setting mechanism

Since each household is a monopolistic supplier of its own labour services, it posses some degree of

monopolistic power on the labour market. Therefore, each household can set its labour price as in the

case of imperfect competition. However, household’s wage setting is subject to nominal rigidities, which

are assumed to follow the Calvo mechanism (see Calvo, 1983). It is assumed that each period only

a fraction 1 − θw of households can readjust their wages. The wages of the remaining households are

2See Del Negro et al. (2004).
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automatically adjusted by partial indexation to the previous period inflation πt−1, where πt = Pt
Pt−1

:

Wt(i) = (πt−1)κwWt−1(i),

where κw ∈ [0, 1] is a degree of indexation to past prices during the period in which a household is not

allowed to renegotiate its wage.

A household that is allowed to renegotiate its wage chooses a wage W̃t(j) maximising its utility in all

states of nature, in which this wage will hold at the chosen value3:

max
W̃t(j)

Et
∞∑
s=0

(θwβ)sεd,t

(
− εl,t

1 + ϕ
Lt(j)

1+ϕ

)

subject to:

∀s eq.(3.1),

eq.(3.2),

Wt+s(j) =

 W̃t(j) for s = 0,

W̃t(j)
∏s
k=1(πt+k−1)κw = W̃t(j)

(
Pt+s−1

Pt−1

)κw
for s > 0.

Because of complete market structure the problem is symmetric, which means that all households able

to reoptimise will set their wages at the same level. Thus, again, the index j can be omitted and

W̃t(j) = W̃t ∀j. Then the evolution of the aggregate wage index is given by the formula:

Wt =
[
(1− θw)W̃ 1−φw

t + θw(πκwt−1Wt−1)1−φw
] 1

1−φw
.

3.1.3 Final Goods Producers

The final good in the economy, Yt, is produced by perfectly competitive firms, called the “aggregators”.

They buy intermediate goods on the market, combine them into a composite and resell to the households.

The bundle is made from continuum of intermediate goods, indexed i ∈ [0, 1] according to the Dixit-

Stiglitz formula:

Yt =

[∫ 1

0

Yt(i)
φp−1

φp di

] φp
φp−1

,

where φp is a substitution elasticity among goods varieties. From the first-order condition of the final

goods producers one obtains the demand for each of the intermediate goods, given the global demand:

Yt(i) =

(
Pt(i)

Pt

)−φp
Yt. (3.3)

3Since the utility function is separable in all three arguments and there exist complete markets, the parts of the expected
interteporal utility function, irrelevant for the wage and labour supply problem, can be omitted.
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Zero-profit condition of the aggregators yields the final good price index:

Pt =

[∫ 1

0

Pt(i)
1−φpdi

] 1
1−φp

.

The expression φp
φp−1 can be interpreted as the markup of the intermediate goods producers.

3.1.4 Intermediate Good Producers

There exist a continuum of intermediate goods firms producing differentiated goods, Yt(i) using Cobb-

Douglas technology:

Yt(i) = max{Z1−α
t Lt(i)

1−αKt(i)
α − ZtΦ, 0},

where α is output elasticity with respect to capital4. The fixed cost Φ is included to ensure zero profits

in the long run, in order to rule out entry into and exit from the intermediate goods market. Zt is a

nonstationary, labour-augmenting technology shock, common across all firms. Following Adolfson et al.

(2007), technology growth rate is defined as z∗t = Zt
Zt−1

and evolves according to an AR(1) process with

mean γ∗:

z∗t = (1− ρz)γ∗ + ρzz
∗
t−1 + σzµz,t, where µz,t ∼ N (0, 1).

All intermediate firms face the same input prices, therefore cost minimisation implies the same for all

firms capital-labour ratio, proportional to the ratio of the factor prices:

Kt

Lt
=

α

1− α
Wt

Rkt
.

Thus, the marginal cost MCt is given by:

MCt =

(
Wt

(1− α)Zt

)1−α(
Rkt
α

)α
.

Price setting

Because intermediate goods firms produce differentiated products, they are able to set their prices in a

monopolistic fashion, i.e. they have possibility to add a mark-up over marginal cost5. The price setting

is assumed to follow Calvo mechanism, i.e. there exist price rigidities. Each period only a fraction θp

of intermediate firms is allowed to reoptimise their prices, while the remaining firms simply index their

prices to the past inflation:

Pt = π
κp
t−1Pt−1,

where κp stands for a degree of price indexation to past inflation. A firm which obtains a signal to

reoptimise its price does it in a forward-looking manner, taking into consideration it might not be allowed

to change its price for some time. Therefore, such a firm maximises its expected present discounted value

4It can be also interpreted as a capital’s share of output.
5As in the classical producer problem from microeconomics, the mark-up is determined by the demand conditions, e.g.

demand price elasticity.
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of future profits over new price levels P̃t(i):

max
P̃t(i)

Et
∞∑
s=0

θspΞt+s (Pt+s(i)−MCt)Yt+s(i)

subject to:

∀s eq.(3.3),

Pt+s(i) =

 P̃t(i) for s = 0,

P̃t(i)
∏s
k=1(πt+k−1)κp = P̃t(i)

(
Pt+s−1

Pt−1

)κp
for s > 0.

where Ξt+s = βsΛt+s is a discounting factor consisting of households’ discounting rate and marginal

utility of households’ nominal income (exogenous to firms). The lack of firm-specific shocks in the model

and equal expected marginal costs across the firms imply that all firms choose the same reoptimised price,

which once again leads to a symmetric equilibrium. Therefore, the formula for the aggregate price level

is given by:

Pt =
[
(1− θp)P̃

1−φp
t + θp(π

κp
t−1Pt−1)1−φp

] 1
1−φp

.

3.1.5 Monetary Authorities

The central bank sets the short-run nominal interest rate Rt according to the Taylor rule:

Rt
R

=

(
Rt−1

R

)κr [(πt
π

)φπ ( Yt
Y ∗t

)φy]1−κr

exp (εr,t),

where R is the steady-state nominal interest rate, π is the stead-state inflation and Y ∗t is the target level

of output. The latter is assumed to be equal to the trend level of output Y ∗t = yZt, where y is a the

steady state output in terms of detrended variables. κr ∈ [0, 1] is a degree of interest rate smoothing;

φy and φπ are weights assigned by the central bank to deviations from steady-state values of output and

inflation, respectively. εr,t is a monetary policy shock, given by the exogenous process:

εr,t = σrµr,t where µr,t ∼ N (0, 1).

3.1.6 Market clearing conditions:

The aggregate resource constraint is given by:

Yt = Ct + It +Gt,
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where:

Ct =

∫ 1

0

Ct(j)dj,

It =

∫ 1

0

It(j)dj,

Kt =

∫ 1

0

Kt(j)dj,

Lt =

[∫ 1

0

Lt(j)
φw−1
φw dj

] φw
φw−1

=

∫ 1

0

Lt(i)di.

Since the model economy is a closed one, it is assumed that there is no fiscal policy, so that the government

expenditure and trade balance are aggregated into an exogenous expenditure shock, to relate aggregate

demand to aggregate supply of goods. In other words, the government spending shock is defined residually

from the national income identity as a deviation from the stationary steady state government spending

level:

ĝt = εg,t,

with

log εg,t = ρg log εg,t−1 + σgµg,t, where µg,t ∼ N (0, 1).

3.2 Equilibrium Conditions

3.2.1 Households Sector

The Lagrangian for the household’s optimisation problem is given by:

Lc,t(j) = Et
∞∑
s=0

βs
{
εd,t+s

[
log(Ct+s(j)− hCt+s−1(j))− εl,t+s

1 + ϕ
Lt+s(j)

1+ϕ + εm,t+s log

(
Mt+s(j)

Zt+sPt+s

)]
+ Λc,t+s(j) [Rt+s−1Bt+s−1(j) +Mt+s−1(j) + Πt+s(j) +Wt+s(j)Lt+s(j) +Rkt+sKt+s(j)

− Pt+sCt+s(j)− Pt+sIt+s(j)−Mt+s(j)−Bt+s(j))]

+ Λk,t+s(j)

[
εi,t+s

(
1− S

(
It+s(j)

It+s−1(j)

))
It+s(j) + (1− δ)Kt+s(j)−Kt+s+1(j)

]}
,

where Λc,t(j) is the Lagrange multiplier on household’s budget constraint6 and Λk,t(j) is the Lagrange

multiplier on capital accumulation. The first-order conditions with respect to Ct(j), Bt(j), Kt+1(j) and

6It can be interpreted as a marginal utility of consumption.
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It(j) are given by7:

εd,t
Ct(j)− hCt−1(j)

− Λc,t(j)Pt =hβEt
{

εd,t+1

Ct+1(j)− hCt(j)

}
(3.4)

Rt =
1

β
Et
{

Λc,t(j)

Λc,t+1(j)

}
(3.5)

Λk,t(j) =βEt
{

Λk,t+1(j)(1− δ) + Λc,t+1(j)Rkt+1

}
(3.6)

βEt

{
Λk,t+1(j)εi,t+1

(
It+1(j)

It(j)

)2

S′
(
It+1(j)

It(j)

)}
=− Λk,t(j)εi,t

[
1− S

(
It(j)

It−1(j)

)
− It(j)

It−1(j)
S′
(

It(j)

It−1(j)

)]
+ Λc,t(j)Pt

(3.7)

The first two conditions, (3.4) and (3.5), imply stochastic Euler equation:

Rt =
1

β
Et
{
πt+1

Uc,t(j)− βhUc,t+1(j)

Uc,t+1(j)− βhUc,t+2(j)

}
,

where Uc,t(j) is a marginal utility of consumption:

Uc,t(j) =
∂Ut(j)

∂Ct(j)
=

εd,t
Ct(j)− hCt−1(j)

.

The last two equations, (3.6) and (3.7), can be rewritten in terms of the price of installed capital which

is defined as Qt(j) =
Λk,t(j)

Λc,t(j)Pt
:

Qt(j) = Et
{

(1− δ)Qt+1(j)

Rt

Pt+1

Pt
+
Rkt+1

RtPt

}
,

1− εi,tQt
[
1− S

(
It(j)

It−1(j)

)
− It(j)

It−1(j)
S′
(

It(j)

It−1(j)

)]
= Et

{
εi,t+1

Qt+1

Rt

Pt+1

Pt

(
It+1(j)

It(j)

)2

S′
(
It+1(j)

It(j)

)}
.

3.2.2 Labour Market

The Lagrangian for the household’s wage setting problem is given by:

Lw,t(j) = Et
∞∑
s=0

(θwβ)s

Λc,t+s(j)Wt+sLt+s

(
W̃t(j)

Wt+s

(
Pt+s−1

Pt−1

)κw)1−φw

−εd,t+sεl,t+s
1 + ϕ

Lt+s(W̃t(j)

Wt+s

(
Pt+s−1

Pt−1

)κw)−φw1+ϕ
 .

The first order condition with respect to W̃t(j) is:

Et
∞∑
s=0

(θwβ)sLt+s(j)

{
W̃t(j)

Pt+s

(
Pt+s−1

Pt−1

)κw
(Uc,t+s(j)− βhUc,t+s+1(j))− φw

φw − 1
Ul,t+s(j)

}
= 0,

7Maximisation with respect to money balances comes from the budget constraint - the real money demand is characterised
by optimisation decisions with respect to the remaining variables.
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where Ul,t(j) is a marginal disutility of labour:

Ul,t(j) =
∂Ut(j)

∂Lt(j)
= −εd,tεl,tLt(j)ϕ.

3.2.3 Intermediate Goods Producers

The Lagrangian for the firm’s price setting problem is given by:

Lp,t(i) = Et
∞∑
s=0

θspΞt+s

[
P̃t(i)

(
Pt+s−1

Pt−1

)κp
−MCt+s

] [
P̃t(i)

Pt+s

(
Pt+s−1

Pt−1

)κp]−φp
Yt+s,

and the related first order condition with respect to P̃t(j) is:

Et
∞∑
s=0

θspΞt+sYt+s

[
P̃t(i)

(
Pt+s−1

Pt−1

)κp
− φp
φp − 1

MCt+s

] [
P̃t(i)

Pt+s

(
Pt+s−1

Pt−1

)κp]−φp
= 0,

which can be rewritten as:

Et
∞∑
s=0

θspΞt+sYt+s(i)

[
P̃t(i)

(
Pt+s−1

Pt−1

)κp
− φp
φp − 1

MCt+s

]
= 0.

3.2.4 The Equilibrium

A definition of the equilibrium of the economy in question is standard and the equilibrium policy functions

are determined by the following equations:

a) The household’s first order conditions:

Λc,t(j)Pt =
εd,t

Ct(j)− hCt−1(j)
− hβEt

{
εd,t+1

Ct+1(j)− hCt(j)

}
Rt =

1

β
Et
{

Λc,t(j)

Λc,t+1(j)

}
Qt(j) = Et

{
(1− δ)Qt+1(j)

Rt

Pt+1

Pt
+
Rkt+1

RtPt

}
,

1− εi,tQt(j)
[
1− S

(
It(j)

It−1(j)

)
− It(j)

It−1(j)
S′
(

It(j)

It−1(j)

)]
= Et

{
εi,t+1

Qt+1(j)

Rt

Pt+1

Pt

(
It+1(j)

It(j)

)2

S′
(
It+1(j)

It(j)

)}

Et
∞∑
s=0

(θwβ)sLt+s(j)

{
W̃t(j)

Pt+s

(
Pt+s−1

Pt−1

)κw
(Uc,t+s(j)− βhUc,t+s+1(j))− φw

φw − 1
Ul,t+s(j)

}
= 0,
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b) The intermediate firm’s first order conditions:

Kt(i)

Lt(i)
=

α

1− α
Wt

Rkt
,

MCt =

(
Wt

(1− α)Zt

)1−α(
Rkt
α

)α
,

Et
∞∑
s=0

θspΞt+sYt+s(i)

[
P̃t(i)

(
Pt+s−1

Pt−1

)κp
− φp
φp − 1

MCt+s

]
= 0,

c) Technological constraints:

Kt+1(j) = (1− δ)Kt(j) + εi,t

(
1− S

(
It(j)

It−1(j)

))
It(j),

Yt(i) = Z1−α
t Lt(i)

1−αKt(i)
α − ZtΦ,

d) The wage and price indices evolution equations:

Wt =
[
(1− θw)W̃t(j)

1−φw + θw(πκwt−1Wt−1)1−φw
] 1

1−φw
,

Pt =
[
(1− θp)P̃t(j)1−φp + θp(π

κp
t−1Pt−1)1−φp

] 1
1−φp

,

e) The Taylor rule of the monetary authorities:

Rt
R

=

(
Rt−1

R

)κr [(πt
π

)φπ ( Yt
Y ∗t

)φy]1−κr

exp (εr,t),

f ) Market clearing conditions:

Yt = Ct + It +Gt,

Ct =

∫ 1

0

Ct(j)dj,

It =

∫ 1

0

It(j)dj,

Kt =

∫ 1

0

Kt(j)dj =

∫ 1

0

Kt(i)di

Lt =

[∫ 1

0

Lt(j)
φw−1
φw dj

] φw
φw−1

=

∫ 1

0

Lt(i)di.

Owing to the symmetry of the equilibrium, in further the indexes j and i will be omitted.

3.2.5 Stochastic processes

There are several sources of disturbances in the model economy, all of which are assumed to be independent

of one another. The first and the most important concerns the labour-augmenting technology Zt and

introduces non-stationarity into the model. Since Zt follows a unit root process, the growth rate of the
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technology z∗t follows an AR(1) stationary process, and the mean value of z∗t is γ∗. The deviation of z∗t
from this steady state value, denoted ẑ∗t , is given by:

ẑ∗t = ρz ẑ
∗
t−1 +

σz
γ∗
µz,t

Preference shifts εd,t, εl,t, εm,t, investment cost disturbance εi,t and government spending shock εg,t

follow AR(1) stationary processes in logs:

log ει,t = ρι log ει,t−1 + σιiµι,t.

However, due to the absence of equilibrium condition for the money holdings, the money demand shock

can be neglected. The unconditional mean of ει,t is equal to 1 (ι ∈ {d, l, i, g}). The log deviation of ει,t

from its steady-state, denoted ε̂ι,t, is thus given by:

ε̂ι,t = ριε̂ι,t−1 + σιiµι,t.

The monetary policy shock εr,t is a white noise process and therefore its expected value is equal to 0.

3.3 Model Solution

The first order conditions, together with the equilibrium conditions described in the previous section,

form a system of nonlinear rational expectations system, which has no solution that can be derived

analytically, and thus needs to be found with numerical methods. As stated in An and Schorfheide

(2007), in the context of likelihood-based DSGE model estimation, linear approximation techniques are

very popular because they lead to a state-space representation of the DSGE model that can be analysed

with the Kalman filter. Therefore, the model will be log-linearised around the deterministic steady state,

which will enable to solve the model, leading to its state-space representation.

3.3.1 Stationary Equilibrium

Since the model has a unit root in the technology process Zt, the analysed economy evolves along

stochastic growth path. Therefore, as in the work of Adolfson et al. (2007), non-stationary variables will

be detrended as follows:

yt =
Yt
Zt
, ct =

Ct
Zt
, it =

It
Zt

kt+1 =
Kt+1

Zt
, gt =

Gt
Zt
, wt =

Wt

PtZt
.
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Rt, πt and Lt remain unchanged as they are stationary. Moreover, for convenience, some variables will

be rescaled:

rkt =
Rkt
Pt
, mct =

MCt
Pt

,

λc,t = Λc,tZtPt, λk,t = Λk,tZtPt.

3.3.2 Steady states

The model economy has a unique steady state in terms of the detrended variables, which is achieved

when stochastic disturbances are continuously equal to zero. For simplicity, the following assumptions

concerning steady-states values of inflation and fixed cost have been made: π = 1 and Φ = 0. The

steady-states of the remaining model variables have been derived from the stationarised model equations

and are given by:

λc =
z∗ − βh
c(z∗ − h)

, R =
z∗

β
,

Q =
rk

R− (1− δ)
, Q = 1,

λcw̃ =
φw

φw − 1
Ul, Ul = −Lϕ,

k

z∗L
=

α

1− α
w

rk
, w = w̃,

mc =

(
w

1− α

)1−α(
rk

α

)α
, mc =

φp − 1

φp
,

i =
(
z∗ − (1− δ)

)
k, P = P̃

y = c+ i+ g, y = L1−α
(
k

z∗

)α
.

3.3.3 Log-linearised model equations

In further, the following notation convention is used:

x̂t = log xt − log x,

i.e. x̂t stands for the log deviation of xt from its steady state value, x. After log-linearisation, the formulas

from the Section 3.2.4 are given as follows8:

8A more detailed derivation of each equation is available in the appendix B.
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a) The household’s first order conditions:

(z∗ − βh)(z∗ − h)λ̂c,t = z∗hĉt−1 −
(
(z∗)2 + βh2

)
ĉt + βz∗hEt{ĉt+1}

− z∗hẑ∗t + βz∗hEt{ẑ∗t+1}+ z∗(z∗ − h)ε̂d,t − βh(z∗ − h)Et{ε̂d,t+1},
(3.8)

R̂t = λ̂c,t − Et{λ̂c,t+1}+ Et{π̂t+1}+ Et{ẑ∗t+1}, (3.9)

Q̂t = −R̂t + Et{π̂t+1}+
1− δ
R

Et{Q̂t+1}+

(
1− 1− δ

R

)
Et{r̂kt+1}, (3.10)

ît =
1

1 + β
ît−1 +

β

1 + β
Et{̂it+1} −

1

1 + β
ẑ∗t −

β

1 + β
Et{ẑ∗t+1}+

Q̂t + ε̂i,t
(1 + β)(z∗)2S′′

, (3.11)

Et
∞∑
s=0

(θwβ)s
{
λ̂c,t+s + ˆ̃wt + κw(P̂t+s−1 − P̂t−1)− Ûl,t+s

}
= 0 (3.12)

where: Ul = −Lϕ, Ûl,t = ε̂d,t + ε̂l,t + ϕL̂t,

b) The intermediate firm’s first order conditions:

r̂kt = L̂t + ŵt + ẑ∗t − k̂t, (3.13)

m̂ct = (1− α)ŵt + αr̂kt , (3.14)

Et
∞∑
s=0

(θpβ)s
(

ˆ̃Pt − P̂t+s + κp(P̂t+s−1 − P̂t−1)− m̂ct+s
)

= 0, (3.15)

c) Technological constraints:

k̂t+1 =
1− δ
z∗

(
k̂t − ẑ∗t

)
+

(
1− 1− δ

z∗

)(
ît + ε̂i,t

)
, (3.16)

ŷt = (1− α)L̂t + α
(
k̂t − ẑ∗t

)
, (3.17)

d) The wage and price indices evolution equations:

ŵt = (1− θw) ˆ̃wt + θw(ŵt−1 + κwπ̂t−1 − π̂t − ẑ∗t ), (3.18)

P̂t = (1− θp) ˆ̃Pt + θp(P̂t−1 + κpπ̂t−1), (3.19)

e) The Taylor rule of the monetary authorities:

R̂t = κrR̂t−1 + (1− κr)(φππ̂t + φy ŷt) + εr,t, (3.20)

f ) Market clearing condition:

ŷt =
c

y
ĉt +

i

y
ît +

g

y
ε̂g,t. (3.21)
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3.3.4 Derived pricing equations

From the above formulas one can obtain pricing equations with a standard economic interpretation.

These are:

• Phillips curve:

The standard general new-Keynesian Phillips curve (NKPC) is obtained by combining (3.15) for t

and t+ 1 with (3.14) and (3.19):

π̂t =
β

1 + βκp
Et{π̂t+1}+

κp
1 + βκp

π̂t−1 +
1− θp
θp

1− βθp
1 + βκp

(
(1− α)ŵt + αr̂kt

)
. (3.22)

Therefore, present inflation depends on expected future inflation, past inflation as well as on

the present marginal cost. The partial indexation parameter κp determines degree of backward-

lookingness of inflation, whereas the price flexibility parameter θp - degree of price stickness.

• Wage equation:

Similarly to the NKPC, one can derive the real wage equation by combining (3.12) for t and t+ 1

with (3.18):

ŵt =
θw

1 + β(θw)2

[
βEt{ŵt+1}+ ŵt−1 − (1 + βκw)π̂t − βθwEt{π̂t+1}+ κwπ̂t−1

−ẑ∗t + βθwEt{ẑ∗t+1}+
1− θw
θw

(1− βθw)
(
Ûl,t − λ̂c,t

)] (3.23)

The NKPC alike, the dependance of the real wage on its own past value is characterised by the

stickness parameter θw, and on the past inflation - by the partial indexation parameter κw.

3.3.5 Model forms

Structural and reduced form

The above 11 log-linearised model equations, (3.8)-(3.11), (3.13), (3.20)-(3.23), form a system of linear

stochastic difference equations called the “structural form” of the DSGE model, which can be expressed

as follows:  Et
{

Γ̃−1st+1 + Γ̃0st + Γ̃1st−1 + Γ̃ε,−1εt+1 + Γ̃εεt

}
= 0,

εt = ρεt−1 + σµt,
(3.24)

where st stands for the vector of endogenous variables (state variables):

st = [ŷt, ĉt, ît, k̂t, R̂t, r̂
k, L̂t, ŵt, π̂t, Q̂t, λ̂t]

′,

εt denotes the vector of exogenous shocks:

εt = [ẑ∗t , ε̂d,t, ε̂l,t, ε̂i,t, ε̂g,t, ε̂r,t]
′,
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the matrices Γ̃−1, Γ̃0, Γ̃1, Γ̃ε,−1 and Γ̃ε stack parameters of the log-linearised equations and the vectors

ρ and σ consist of the parameters of the stochastic processes. The system (3.24) can be expressed

equivalently as:

Γ0st = Γ1st−1 + Γεεt + Γηηt, (3.25)

where ηt is a vector of rational expectations forecast errors ηx,t, defined as ηx = x̂t − Et−1{x̂t}, where x

is a forward-looking variable. Then to solve (3.25), means to rewrite it in a reduced form of:

st = Φ1st−1 + Φεεt, (3.26)

which implies finding the matrices Φ1 and Φε. In practise, to deal with this issue, the numerical methods

are being used, e.g. the Dynare package9, which are based on the generalised Schur decomposition (QZ

decomposition) of the matrices Γ0 and Γ1
10. The equation (3.26) is also called the “state transition

equation”, because it describes how the system passes from the state in the moment t to a state in the

moment t+ 1.

State-space form

The vector st gathers variables which are theoretical and rarely can be observed directly. Therefore, to

estimate the original model, the relationship between conceptual and statistical variables has to be found.

It is done within a linear state-space form, which is then used to evaluate the likelihood function using the

Kalman Filter. The state-space form comprises of the transition equation (3.26) and the “measurement

equation” given by:

yt = A+Bst. (3.27)

As stated in Lubik and Schorfheide (2006), the measurement equation links the model variables st to the

vector of observed variables yt11 through the matrices A and B. The former consists of the mean values

of yt - related to the underlying structural parameters, while the latter selects the elements of st and

thus does not depend on model parameters. Since the exact form of the measurement equation depends

on the choice of observables, the details of the measurement equation will be presented in the empirical

part of this paper.

9The code of the Dynare dsge.mod file, used to solve the model presented in this paper, can be found in the Appendix
C.

10The details of the algorithm can be found e.g. in Sims (2002).
11For the sake of coherence with the DSGE-VAR part, the vector of observables is also denoted yt, which should not be

confused with the stationarised output.
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Chapter 4

Empirical Analysis

4.1 Data

To estimate the model, six key macroeconomic quarterly observable variables for Poland are used1: real

GDP (GDPt), real consumption (final consumption expenditure of households, CONSt), real invest-

ment (gross fixed capital formation, INVt), real wage (compensation of employees, WGt), inflation rate

(chained CPI inflation rate, CPIt) - all seasonally adjusted with X-12-ARIMA method - and the nominal

short-term interest rate (3 month WIBOR, WIBORt). The period covered is 1995Q1 - 2010Q4, which

gives 64 observations for each variable.

The time series of GDP, consumption, investment, wage and the interest rate were taken from the Eurostat

online database. The series of population 16 years and older came from the OECD online database. The

inflation rate series was taken from the GUS official web page. The inflation target series was constructed

basing on the NBP official announcements.

The nominal series of the GDP, consumption and investment were turned into the real terms by deflating

them with the CPI deflator2 and dividing by population 16 years and older. The real wage was obtained

by deflating the nominal wage using the CPI deflator. The inflation rate as well as the interest rate were

corrected for the inflation target, priorly smoothened using centred moving average. Due to the model

assumption of the presence of a deterministic growth rate γ (common for all real variables), the data has

not been detrended prior to estimation.

After the transformations described above, the log differences of all real variables were taken to obtain

their quarterly growth rates, which were thereafter converted into percentages. The interest rate has

been expressed in quarterly terms. Figure D.1 in the Appendix D presents the plots of the transformed

data.

1The symbols of the corresponding observables, together with captions of the statistical series when needed, are given
in the brackets.

2Consumer price index with 1995Q1 as a base period.
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The corresponding measurement equations is given by:

yt ≡



Y obst

Cobst

Iobst

W obs
t

Πobs
t

Robst


=



100×∆ logGDPt

100×∆ logCONSt

100×∆ log INVt

100×∆ logWGt

CPIt

0.25×WIBORt


=



100× (ŷt − ŷt−1 + ẑ∗t + log γ∗)

100× (ĉt − ĉt−1 + ẑ∗t + log γ∗)

100× (̂it − ît−1 + ẑ∗t + log γ∗)

100× (ŵt − ŵt−1 + ẑ∗t + log γ∗)

100× (π̂t + π̄)

100× (R̂t + R̄)


,

where ∆ denotes first time difference of a variable. Because the steady-state inflation rate is assumed to

be equal to one3, π̄ = log π is set at zero; R̄ is the steady-state interest rate, determined by the model

parameters: R̄ = logR, where R = γ∗/β.

Note on the absence of the labour input as an observable

There is a need to comment on the absence of the data concerning the labour input, as the hours worked

are often included as an observable in the measurement equation4. The reasons for such a decision were

both of theoretical and practical nature.

Firstly, a problem of singularity of the covariance matrix generated by the DSGE model might arise, when

the number of structural shocks is not equal to the number of endogenous variables to which the model

is fitted. As stated in Lubik and Schorfheide (2006), any DSGE model that generates a rank-deficient

covariance matrix for yt is clearly at odds with the data, since in the forecast error covariance matrix

of VAR models is non-singular (because yt is predicted based on its lagged values). Hence, the larger

the dimension of yt, the more shocks have to be introduced into the model. Therefore, it was desirable

to make the number of shocks and the number of observables equal, and since there are six exogenous

shocks in the DSGE model, the number of observables should be set to six as well.

Obviously, the same goal could have been achieved by introducing an additional shock, as it is recom-

mended in Del Negro and Schorfheide (2004). However, it has been considered as unsuitable due to the

scarcity of the data available for Poland - both in terms of shortness of the time series and the lack of

proper counterpart for the “hours worked” data. Moreover, the employment in the Polish economy, due

to its specificity, deserves a separate treatment and adding labour input data into the model, without

former in-depth analysis, could lead to misleading results and cast doubts over presented outcomes.

4.2 Parameters

The assumptions concerning model parameters, i.e. either their calibrated values, or the specifications for

their prior distributions, are taken mainly from the studies of the Polish economy: Grabek et al. (2007)

3In the model, the central bank follows the zero inflation target. The fact, that the inflation rate together with the
interest rate were detrended with the official inflation target of the NBP is compatible with this assumption.

4See Smets and Wouters (2003), Del Negro et al. (2007), Watanabe (2009), Adjemian et al. (2008).
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and Kolasa (2009). In several cases slight corrections were needed to adjust the assumptions either to

the long-term restrictions imposed by the data or to the measurement equations.

4.2.1 Calibrated parameters

Several model parameters characterise only the steady state, i.e. the long-term relationships, and as such

are not identifiable from the data and cannot be estimated on log differences of the time series. Hence, it

is a common practice in the DSGE modelling to calibrate several of them5. The fact that the available

sample is rather short additionally encourages to resort to such a method of setting parameters. The

exact calibrated values are reported in the table 4.1.

Table 4.1: Calibrated parameters

Symbol Interpretation Value

α share of capital in output 0.330

β household’s discount factor 0.995

δ depreciation rate 0.025

φw substitution elasticity among labour varieties 3.000

φp substitution elasticity among good varieties 3.000

Steady state shares in output

c/y consumption-output ratio 0.582

g/y government spending-output ratio 0.200

The calibrated values of the steady state shares in output of consumption and government spending imply

the steady state share of investment equal to 0.218, which in turn leads to the steady state capital-output

ratio of 8.720.6

4.2.2 Prior distributions

The remaining parameters, assumed to be independently distributed, are estimated with Bayesian tech-

niques. The parameters from the [0, 1] interval are assumed to be beta distributed. These are: habit per-

sistence parameter h, Calvo probabilities θw and θp, indexation parameters κw and κp, interest smoothing

parameter κr as well as, to ensure stationarity of stochastic processes, the shock persistence parameters,

ρι, ι ∈ {z, d, l, i, g}. The gamma distribution is used for the parameters taking only positive values:

inverse labour supply elasticity ϕ, the Taylor rule parameters φπ and φy and the technology growth rate

γ. For the shock standard deviations σι, ι ∈ {z, d, l, i, g,m} the inverse gamma distribution has been

used. The adjustment cost parameter S′′ is assumed to follow a normal distribution.

Moreover, as already mentioned, following Adjemian et al. (2008) the DSGE model prior weight was

estimated and the uniform distribution was used as a prior for λ, since there were no strong initial beliefs
5See Grabek et al. (2007), Kolasa (2009), Pytlarczyk (2005).
6This is a straightforward derivation from the steady state relations described in the previous chapter.
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concerning the optimal size of the artificial sample. However, the distribution support was tighter than

in the cited paper and was limited to the interval [0, 2], because from the beginning on the model has

been expected to be significantly misspecified.

The details concerning prior distributions are presented in the tables reporting on the estimation results.

In most of the cases they are similar to those used in Grabek et al. (2007) and Kolasa (2009). In particular,

the mean of the technology growth rate, assumed to be equivalent to the long-term economic growth rate,

is set to 1.0085 implying a growth rate of 3.4% per annum - a value reported in Grabek et al. (2007).

4.3 Solution and estimation

The practical implementation, i.e. solving of the DSGE-VAR model and its Bayesian estimation, was

carried out using the Dynare package, version 4.2.2 (Adjemian et al., 2011). The Dynare file code can

be found in the Appendix C. The likelihood function was evaluated using the Kalman Filter. The

considered lag length for the DSGE-VAR model was set equal to 4. In order to make the DSGE model

estimation comparable with the VAR estimation, in the former case the first four observations have been

excluded from the estimation. To obtain draws from the posterior distribution, 500,000 replications for

the Metropolis-Hastings algorithm were run, with the burn-in period ratio of 0.57. To find the mode of

the posterior density, the fmincon optimisation routine8 was used. The scaling parameter for the inverse

Hessian computed at the obtained mode - used for the jumping distribution in the RWMH algorithm -

was set equal to 0.45 yielding the average acceptation rate per chain of 0.26.

4.4 Results

The obtained estimation results are reported below - for the structural parameters in the table 4.4, and

for the shock parameters in the table 4.3. The plots of the prior and posterior densities for all parameters

can be found in the Appendix D.

7The ratio of the number of the first draws to be disregarded to the total number of runs.
8fmincon is a function included in MATLAB’s Optimization Toolbox, used to minimise a scalar function of multiple

variables in constrained optimisation problems with linear restrictions.
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Table 4.2: Estimation results - structural parameters

Symbol Interpretation
Prior distribution Optimisation result Posterior distribution

Type Mean St. dev. Mode St. dev. Mean 5% 95%

h habit persistence beta 0.70 0.10 0.703 0.063 0.716 0.619 0.815

ϕ inv. labour supply elast. gamma 2.00 0.70 1.209 0.438 1.426 0.641 2.170

S′′ capital adjustment cost normal 6.00 1.50 4.336 1.218 5.085 2.927 7.243

θw Calvo wages beta 0.60 0.10 0.564 0.077 0.595 0.480 0.717

θp Calvo prices beta 0.60 0.10 0.618 0.044 0.619 0.547 0.692

κw wage indexation beta 0.50 0.15 0.542 0.173 0.533 0.290 0.780

κp price indexation beta 0.50 0.15 0.504 0.154 0.512 0.281 0.735

κr interest rate smoothing beta 0.80 0.08 0.835 0.026 0.835 0.791 0.877

φπ inflation response gamma 1.70 0.15 1.829 0.145 1.846 1.613 2.089

φy output response gamma 0.125 0.065 0.043 0.026 0.059 0.013 0.104

γ technology growth rate gamma 1.0085 0.0015 1.0078 0.001 1.008 0.006 0.010

λ DSGE prior weight uniform 1.00 1.00 1.044 0.130 1.061 0.840 1.276
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Table 4.3: Estimation results - shock parameters

Symbol
Prior distribution Optimisation result Posterior distribution

Type Mean St. dev. Mode St. dev. Mean 5% 95%

Shock persistence parameters

ρz beta 0.40 0.10 0.171 0.056 0.188 0.092 0.276

ρd beta 0.70 0.10 0.612 0.115 0.607 0.439 0.782

ρl beta 0.70 0.10 0.439 0.101 0.435 0.279 0.593

ρi beta 0.70 0.10 0.552 0.104 0.539 0.373 0.702

ρg beta 0.70 0.10 0.768 0.096 0.741 0.595 0.892

Shock dispersion parameters

σz inv. gamma 0.005 inf 0.015 0.003 0.016 0.011 0.021

σd inv. gamma 0.005 inf 0.027 0.005 0.030 0.020 0.048

σl inv. gamma 0.005 inf 0.074 0.025 0.094 0.043 0.143

σi inv. gamma 0.007 inf 0.080 0.026 0.100 0.050 0.147

σg inv. gamma 0.010 inf 0.030 0.004 0.037 0.024 0.039

σr inv. gamma 0.003 inf 0.0016 0.0002 0.0016 0.0012 0.0020

The posterior mode for λ hyperparameter is equal to 1.061, with the 90% highest density interval ranging

from 0.840 to 1.276. It can be interpreted in the following way: the optimal mixed sample, used to

estimate the VAR, consists of 63 actual observations and 67 artificial ones. Hence, the best outcome is

achieved for the sample with more observations generated by the DSGE model than coming from the

data. Moreover, the obtained value is remarkably higher than the minimum one (needed for the prior

to be well defined), equal to 0.48. Therefore, one can infer that the DSGE model is a useful source of

information for the VAR estimation. On the one hand, since any finite value of λ suggests that loosening

of the restriction imposed by the structural model improves the empirical performance of the DSGE-VAR

model, the estimated DSGE prior weight indicates significant misspecification of the presented DSGE

model. Furthermore, the estimated value is quite low compared to the results of previously cited authors.

For example, Adjemian et al. (2008) obtained values equal to 1.25 and 1.55 (for two model specifications)

and Del Negro et al. (2007), who did not estimate λ but chose its value to maximise the marginal density,

reported the value 1.25. However, in their earlier research, Del Negro et al. (2004) achieved considerably

lower value of 0.75, the result reached also by Watanabe (2009).

Overall, the parameter estimates are in line with those obtained in previously cited studies of the Polish

economy. Moreover, the comparison of the prior and posterior densities implies that the data are quite

informative for the most of the parameters. However, in some cases both distributions almost coincide:

for the indexation parameters and for the parameter of the government spending shock persistence the

likelihood does not seem to contain any meaningful information.

The degree of external habit formation seems to be significant in Poland, with the posterior mode of h

equal to 0.72, lying between the earlier results for the Polish economy (0.80 in Kolasa, 2009 and 0.60
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in Grabek et al., 2007). The estimated mean of the inverse labour supply elasticity, equal to 1.43, is

lower than the one reported in Kolasa (2009), 1.95, as well as in the studies of other economies (e.g. 1.69

in Del Negro et al., 2007 or 1.80 in Pytlarczyk, 2005). The found mean of the curvature of the capital

adjustment cost function (5.08) is lower than the one obtained in earlier works on the Polish economy

(e.g. 6.24 in Grabek et al., 2007), however still higher than, for instance, in Germany (2.42, Pytlarczyk,

2005) or in the US (4.57, Del Negro et al., 2007).

The posterior means of the Calvo probabilities (0.59 and 0.62 for wages and prices, respectively) are very

similar to the values reported for the Polish economy by the previously cited authors and suggest that,

on average, prices and wages are being reoptimised in Poland every two-and-half quarter. Therefore,

the model implies moderate price and wage stickiness in Poland, in particular when compared to other

economies. For example, the findings for Germany are 0.85 and 0.96 for wages and prices, respectively

(Pytlarczyk, 2005), wheres Del Negro et al. (2007) report the posterior mean for the US economy of 0.79

for both. The posterior means for the wage and price indexation parameters are noticeably higher than

in other studies on the Polish economy (0.53 and 0.51, respectively), where these are usually close to

0.30. It is of no wonder, however, taking into consideration their already mentioned poor identifiability

from the data, which leads to the posterior coinciding with the prior.

According to the estimates, the monetary authorities in Poland follow a version of the Taylor rule,

strongly reacting to inflation deviations from its target value and virtually neglecting output shifts. The

posterior means are equal to 1.85 and 0.06 for the inflation and output response parameters, respectively.

Moreover, interest rate smoothing seems to be of concern in the Polish monetary policy, with the relevant

parameter of 0.83. These findings are quite similar to those obtained by other authors for the Polish

economy: e.g. corresponding values reported by Grabek et al. (2007) are 1.38, 0.03 and 0.82.

As far as the disturbances are concerned, the attained estimates suggest moderate shock persistence and

limited degree of disturbance volatility in the Polish economy and are roughly in line with the previously

cited studies. The only exception is the technology process with the posterior mean of the autoregressive

coefficient equal to 0.19, which is a considerably smaller value than e.g. 0.81 reported in Grabek et al.

(2007). Posterior means of shock dispersion parameters are quite low when compared to the results for

the Polish economy presented by the previously cited authors, yet still they exceed the estimates for other

economies (e.g. Pytlarczyk, 2005). Such results may suggest that the severeness of shocks hitting the

Polish economy has suppressed in recent years, assimilating it to more stable economies.
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Chapter 5

Model evaluation

5.1 Impulse response functions

In order to assess the quality of the DSGE model, it is desirable to analyse what reactions of observed

variables to stochastic disturbances it indicates. To do so, one can compare the impulse response functions

(IRFs) obtained from the structural model with those delivered by the empirical one. However, reduced

form VAR is not capable of “unpacking” the shocks which hit the system and therefore it needs to be

identify. The identification procedure, described in the Section 2.4, enables computation of the IRFs in a

Bayesian fashion, making use of the hybrid structure of the DSGE-VAR model. Such a procedure can be

understood as comparing the prior IRFs, generated by the DSGE model, to the posterior IRFs, obtained

after updating the initial beliefs with the information coming from the data. Following Del Negro et al.

(2007), IRFs with respect to only two kinds of shocks will be presented in detail, i.e. to a monetary policy

shock and to a technology one, since these are the most important disturbances for policy analysis. The

remaining IRFs are presented in the Appendix D.

Figure 5.1 reveals the unsatisfactory performance of the DSGE model with respect to identification of

responses to a monetary policy shock. The theoretical model suggests that growth rates of output,

consumption, investment and wages react almost instantaneously to the monetary disturbance and that

these reactions fade rapidly - contrary to the DSGE-VAR model, which indicates a hump-shape responses.

The IRFs delivered by the latter show that the impact of monetary policy disturbance is sizable and

rather long-lasting, especially in the case of investment and wages growth rates. The inflation and the

interest rate responses implied by the DSGE model match those from the DSGE-VAR model, yet, again,

their persistence is much smaller. As far as the uncertainty of the estimates is concerned, the reactions

implied by the DSGE-VAR model are less precise than those from the DSGE model, in which case the

90% intervals almost coincide with the mean estimates. However, the IRFs from the DSGE model are

virtually always within the 90% bands delivered by the DSGE-VAR model.

Figure 5.2 shows that, contrary to reactions to a monetary policy shock, the IRFs with respect to a tech-

nology disturbance almost coincide for both models. Thus, the constructed structural model matches
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Figure 5.1: Bayesian Impulse Response Function - monetary policy shock.

Note: bold solid line - IRF from the DSGE, grey area - 90% interval for the DSGE,
bold dashed line - IRF from the DSGE-VAR, dashed lines - 90% bands for the DSGE-VAR.

the estimated DSGE-VAR not only qualitatively but also quantitatively. In both models the reactions of

output, consumption and wage growth rates to the technology shock are instantaneous and rather tempo-

rary, with all variables smoothly returning to their steady states after approximately 6 to 8 quarters. The

behaviour of investment growth rate, inflation and interest rate is more persistent and complex, following

a hump-shape pattern. The indications of both models are alike in the case of the two latter variables,

suggesting that they are virtually permanently increased by the technology shock. The responses of the

investment growth rate to such a disturbance are also similar, however the DSGE-VAR suggests that in

this case the impact of a technology shock is more prolonged. Compared to the IRFs with respect to the

monetary policy shock, the reactions suggested by the DSGE model for the technology disturbance are

slightly less precise, nevertheless they still fit the 90% intervals delivered by the DSGE-VAR model.

The explanation for such an inconsistent performance of both models, lack of coherence in the case of

the monetary policy shock and accordance with respect to the technology disturbance, may be twofold.

Firstly, such a result clearly indicates the misspecification of the theoretical model, which seems not to be

able to track the monetary data satisfactorily enough. It seems that the number of transmission channels

and introduced rigidities is insufficient to fairly explain the observed phenomena. However, taking into

consideration good outcomes in terms of the remaining observables (see: Figures D.4 - D.7), the possible

reason for underperformance of the DSGE model only in one dimension may lie in the data. It can be

seen in the Figure D.1 that the WIBOR time series is clearly nonstationary; this feature remains even

after detrending of the interest rate with the inflation target data1. High values of the interest rate at

the beginning of the sample can be attributed to the transition of the Polish economy in the middle of

1The Augmented Dickey-Fuller Test for WIBOR time series yields the p-value of 0.026, therefore the unit root null
hypothesis cannot be rejected at the 5% significance level.
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Figure 5.2: Bayesian Impulse Response Function - technology shock.

Note: bold solid line - IRF from the DSGE, grey area - 90% interval for the DSGE,
bold dashed line - IRF from the DSGE-VAR, dashed lines - 90% bands for the DSGE-VAR.

the 1990s. Assuming that the latter explanation is at least partly plausible, it may serve as justification

for the DSGE model to some extend.

5.2 Stochastic disturbances

In order to examine the model empirical performance, it might be of interest to analyse the time series

of the historical stochastic disturbances, which are delivered via the Kalman smoother. The Figure

5.3 presents smoothed shocks, i.e. a reconstruction of unobserved realisations of stochastic processes,

computed using all the information contained in the sample, given the model structure.

It is difficult to identify the stochastic processes on the basis of the graphs below alone, yet the plots

may still be useful, giving some insight into the nature of shocks hitting the Polish economy. Firstly,

it seems that the volatility of disturbances lessens in the second half of the sample, which is intuitively

a plausible reasoning, given turmoils present in the Polish economy in the 1990s. Secondly, the highest

magnitude is revealed by the investment and labour shocks, while the technology and consumption

disturbances are relatively mild. Such an observation is in line with the previously noted remarks, e.g.

concerning considerable degree of habit formation in Poland. Thirdly, monetary policy shocks in the first

half of the sample clearly exceed those from the second half, confirming the presumption regarding the

nonstationarity of the WIBOR time series.
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Figure 5.3: Smoothed (two-sided) estimates of the unobserved shocks to the transformed variables
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Chapter 6

Conclusions

The main objective of this research was to model the Polish economy employing a hybrid DSGE-VAR

approach. The core of the described procedure is to estimate the VAR in a Bayesian fashion, with the

priors derived from a DSGE model. The specification of the latter is very close to the one of Del Negro

et al. (2007), who augmented the model developed by Smets and Wouters (2003), in particular, by

introducing a unit root into it, which facilitates the estimation with unfiltered data. Overall, this class

of medium size DSGE models features a number of real and nominal rigidities, which allow to capture

the persistence observed in the data, and has become a benchmark in the macroeconomic modelling.

Similarly, the application of Bayesian techniques to model estimation is nowadays the state of the art,

since it enables taking a more in-depth insight into the functioning of the economy compared to the

frequentists’ approach.

This paper appears to be the first attempt to implement the DSGE-VAR procedure to the Polish macroe-

conomic data, hence the applied DSGE model is clearly oversimplified. Nevertheless, the obtained results

are fairly satisfactory. Most of the DSGE model parameters were identified and the obtained estimated

are roughly in line with the previous studies of the Polish economy. Moreover, in spite of its misspecifi-

actions, the DSGE model seems to be a useful source of information for the VAR estimation. In terms

of the generated IRFs, the DSGE-VAR model performance is inconsistent: despite good outcomes with

respect to a technology disturbance, the model fails to provide plausible reactions to a monetary policy

shock.

Since forecasting stays in the centre of attention of macroeconomic policy making, it would be of interest

to employ the estimated DSGE-VAR model to generate future paths for macroeconomic series. This task,

however, remains left for the prospective research. Moreover, the future work could extend the underlying

DSGE model either slightly, by introducing additional frictions, or, more desirably, to a greater extend by

opening the economy. Eventually, it would be worth comparing several competing model specifications,

e.g. concerning monetary policy rules, and examine their empirical performance.
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Appendix A

Model parameters and exogenous

processes

Table A.1: Structural parameters

Symbol Interpretation

α share of capital in output

β household’s discount factor

h degree of habit persistence

ϕ inverse of the Frisch elasticity of labour supply

δ depreciation rate

S′′ curvature of the investment cost function at the steady state

φw substitution elasticity among labour varieties

φp substitution elasticity among good varieties

θw fraction of households unable to reoptimise wages

θp fraction of firms unable to reoptimise prices

κw degree of wage indexation to past inflation

κp degree of price indexation to past inflation

κr degree of interest rate smoothing

φπ central bank’s weight on inflation gap

φy central bank’s weight on output gap

γ technology growth rate
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Table A.2: Stochastic Processes

Symbol Law of motion Interpretation

zt zt = (1− ρz)γ + ρzzt−1 + σzµz,t growth rate of technology

εd,t log εd,t = ρd log εd,t−1 + σdµd,t intertemporal preferences

εl,t log εl,t = ρl log εl,t−1 + σlµl,t labour supply

εm,t log εm,t = ρm log εm,t−1 + σmµm,t preferences to money holdings

εi,t log εi,t = ρi log εi,t−1 + σiµi,t investment price

εg,t log εg,t = ρg log εg,t−1 + σgµg,t government spending

εr,t εr,t = σrµr,t monetary policy rule

∀ι ∈ {z, d, l,m, i, g, r} µι,t
iid∼ N (0, 1)
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Appendix B

Model equations

B.1 Equilibrium conditions

The list of the model equations, their stationarised and log-linearised forms, together with corresponding

steady states:

a) The household’s first order conditions:

• Marginal utility of consumption:

foc: Λc,tPt =
εd,t

Ct − hCt−1
− βhEt

{
εd,t+1

Ct+1 − hCt

}
stationarised: λc,t =

εd,t
ct − h ct−1

z∗t

− βhEt

{
1

z∗t+1

εd,t+1

ct+1 − h ct
z∗t+1

}

steady state: λc =
z∗ − βh
c(z∗ − h)

log-linearised: (z∗ − βh)(z∗ − h)λ̂c,t = z∗hĉt−1 −
(
(z∗)2 + βh2

)
ĉt + βz∗hEt{ĉt+1}

− z∗hẑ∗t + βz∗hEt{ẑ∗t+1}

+ z∗(z∗ − h)ε̂d,t − βh(z∗ − h)Et{ε̂d,t+1}

• Consumption Euler equation:

foc: Rt =
1

β
Et
{

Λc,t
Λc,t+1

}
stationarised: Rt =

1

β
Et
{

λc,t
λc,t+1

πt+1z
∗
t+1

}
steady state: R =

z∗

β

log-linearised: R̂t = λ̂c,t − Et{λ̂c,t+1}+ Et{π̂t+1}+ Et{ẑ∗t+1}
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• Tobin-Q equation:

foc: Qt = Et
{

(1− δ)Qt+1

Rt

Pt+1

Pt
+
Rkt+1

RtPt

}
,

stationarised: Qt =
1

Rt
Et
{
πt+1

(
(1− δ)Qt+1 + rkt+1

)}
steady state: Q =

rk

R− (1− δ)

log-linearised: Q̂t = −R̂t + Et{π̂t+1}+
1− δ
R

Et{Q̂t+1}+

(
1− 1− δ

R

)
Et{r̂kt+1}

• Investment equation:

foc: 1− εi,tQt
[
1− S

(
It
It−1

)
− It
It−1

S′
(

It
It−1

)]
= Et

{
εi,t+1

Qt+1

Rt

Pt+1

Pt

(
It+1

It

)2

S′
(
It+1

It

)}

stationarised: 1− εi,tQt
[
1− S

(
it
it−1

z∗t

)
− it
it−1

z∗t S
′
(

it
it−1

z∗t

)]
= Et

{
εi,t+1

Qt+1

Rt
πt+1

(
it+1

it
z∗t+1

)2

S′
(
it+1

it
z∗t+1

)}
steady state: Q = 1

log-linearised: ît =
1

1 + β
ît−1 +

β

1 + β
Et{̂it+1} −

1

1 + β
ẑ∗t −

β

1 + β
Et{ẑ∗t+1}+

Q̂t + ε̂i,t
(1 + β)(z∗)2S′′

• Wage equation:

foc: Et
∞∑
s=0

(θwβ)sLt+s

{
W̃t

Pt+s

(
Pt+s−1

Pt−1

)κw
(Uc,t+s − βhUc,t+s+1)− φw

φw − 1
Ul,t+s

}
= 0

or, equivalently: Et
∞∑
s=0

(θwβ)sLt+s

{
Λc,t+sW̃t

(
Pt+s−1

Pt−1

)κw
− φw
φw − 1

Ul,t+s

}
= 0

stationarised: Et
∞∑
s=0

(θwβ)sLt+s

{
λc,t+sw̃t

(
Pt+s−1

Pt−1

)κw
− φw
φw − 1

Ul,t+s

}
= 0

steady state: λcw̃ =
φw

φw − 1
Ul

log-linearised: Et
∞∑
s=0

(θwβ)s
{
λ̂c,t+s + ˆ̃wt + κw(P̂t+s−1 − P̂t−1)− Ûl,t+s

}
= 0

where: Ul = −Lϕ, Ûl,t = ε̂d,t + ε̂l,t + ϕL̂t

b) The intermediate firm’s first order conditions:
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• Real cost of capital:

foc:
Kt

Lt
=

α

1− α
Wt

Rkt

stationarised:
kt
z∗tLt

=
α

1− α
wt
rkt

steady state:
k

z∗L
=

α

1− α
w

rk

log-linearised: r̂kt = L̂t + ŵt + ẑ∗t − k̂t

• Marginal cost:

foc: MCt =

(
Wt

(1− α)Zt

)1−α(
Rkt
α

)α
,

stationarised: mct =

(
wt

(1− α)Zt

)1−α(
rkt
α

)α
,

steady state: mc =

(
w

1− α

)1−α(
rk

α

)α
log-linearised: m̂ct = (1− α)ŵt + αr̂kt ,

• Pricing equation:

foc: Et
∞∑
s=0

θspΞt+sYt+s

[
P̃t

(
Pt+s−1

Pt−1

)κp
− φp
φp − 1

MCt+s

]
= 0

stationarised: Et
∞∑
s=0

(θpβ)sλc,t+syt+s

[
P̃t
Pt+s

(
Pt+s−1

Pt−1

)κp
− φp
φp − 1

mct+s

]
= 0

steady state: mc =
φp − 1

φp

log-linearised: Et
∞∑
s=0

(θpβ)s
(

ˆ̃Pt − P̂t+s + κp(P̂t+s−1 − P̂t−1)− m̂ct+s
)

= 0

c) Technological constraints:

• Capital accumulation:

Kt+1 = (1− δ)Kt + εi,t

(
1− S

(
It
It−1

))
It

stationarised: kt+1z
∗
t+1 = (1− δ)kt + εi,t

(
1− S

(
it
it−1

z∗t

))
it

steady state: i = [ z∗ − (1− δ)]k

log-linearised: k̂t+1 =
1− δ
z∗

k̂t +

(
1− 1− δ

z∗

)(
ît + ε̂i,t

)
− ẑ∗t+1
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• Production function

Yt = Z1−α
t L1−α

t Kα
t − ZtΦ

stationarised: yt = L1−α
t

(
kt
z∗t

)α
− Φ

steady state: y = L1−α
(
k

z∗

)α
log-linearised: ŷt = (1− α)L̂t + α

(
k̂t − ẑ∗t

)

d) Wage and price indices:

• Price index:

Pt =
[
(1− θp)P̃

1−φp
t + θp(π

κp
t−1Pt−1)1−φp

] 1
1−φp

steady state: P = P̃

log-linearised: P̂t = (1− θp) ˆ̃Pt + θp(P̂t−1 + κpπ̂t−1)

• Wage index:

Wt =
[
(1− θw)W̃ 1−φw

t + θw(πκwt−1Wt−1)1−φw
] 1

1−φw

stationarised: w1−φw
t = (1− θw)w̃1−φw

t + θw

(
πκwt−1

πtz∗t
wt−1

)1−φw

steady state: w = w̃

log-linearised: ŵt = (1− θw) ˆ̃wt + θw(ŵt−1 + κwπ̂t−1 − π̂t − ẑ∗t )

ŵt = (1− θw) ˆ̃wt + θw(ŵt−1 + κwπ̂t−1 − π̂t − γẑt)

e) Taylor rule:

Rt
R

=

(
Rt−1

R

)κr [(πt
π

)φπ ( Yt
Y ∗t

)φy]1−κr

exp (εr,t)

stationarised:
Rt
R

=

(
Rt−1

R

)κr [(πt
π

)φπ (yt
y

)φy]1−κr

exp (εr,t)

log-linearised: R̂t = κrR̂t−1 + (1− κr)(φππ̂t + φy ŷt) + εr,t
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f ) Market clearing condition:

Yt = Ct + It +Gt

stationarised: yt = ct + it + gt

steady state: y = c+ i+ g

log-linearised: ŷt =
c

y
ĉt +

i

y
ît +

g

y
ĝt

where: ĝt = ε̂g,t

B.2 Derivation of the Phillips curve and the wage equation

Below, to spare on notation, the rational expectation operators have been omitted and the variables

dated t+ 1 refer to the rational expectation of those variables.

Phillips curve:

∞∑
s=0

(θpβ)s
(

ˆ̃Pt − P̂t+s + κp(P̂t+s−1 − P̂t−1)− m̂ct+s
)

= 0 implies:

for t: 1
1−βθp

(
ˆ̃Pt − κpP̂t−1

)
=
∑∞
s=0(θpβ)s

(
P̂t+s − κpP̂t+s−1 + m̂ct+s

)
for t+1: 1

1−βθp

(
ˆ̃Pt+1 − κpP̂t

)
=
∑∞
s=0(θpβ)s

(
P̂t+1+s − κpP̂t+s + m̂ct+1+s

)
⇒

1

1− βθp

(
ˆ̃Pt − κpP̂t−1

)
=
(
P̂t − κpP̂t−1 + m̂ct

)
+ βθp ·

1

1− βθp

(
ˆ̃Pt+1 − κpP̂t

)

ˆ̃Pt − κpP̂t−1 = (1− βθp)
(
P̂t − κpP̂t−1 + m̂ct

)
+ βθp

(
ˆ̃Pt+1 − κpP̂t

)
ˆ̃Pt − βθp ˆ̃Pt+1 = (1− βθp)

(
P̂t − κpP̂t−1 + m̂ct

)
+ κp

(
P̂t−1 − βθpP̂t

)
ˆ̃Pt − βθp ˆ̃Pt+1 = (1− βθp)P̂t − βθpκp(P̂t − P̂t−1) + (1− βθp)m̂ct

ˆ̃Pt − βθp ˆ̃Pt+1 − (1− βθp)P̂t︸ ︷︷ ︸
LHS

= −βθpκpp̂it + (1− βθp)m̂ct

P̂t = (1− θp) ˆ̃Pt + θp(P̂t−1 + κpπ̂t−1) implies:

ˆ̃Pt =
1

1− θp

(
P̂t − θp(P̂t−1 + κpπ̂t−1)

)
thus:

LHS = ˆ̃Pt − βθp ˆ̃Pt+1 − (1− βθp)P̂t

=
1

1− θp

[
P̂t − βθpP̂t+1 − θp(P̂t−1 − βθpP̂t)− θpκp(π̂t−1 − βθpπ̂t)

]
− (1− βθp)P̂t

=
1

1− θp

[
−βθp(P̂t+1 − P̂t) + θp(P̂t − P̂t−1)− θpκp(π̂t−1 − βθpπ̂t)

]
=

θp
1− θp

[
− βπ̂t+1 + (1 + βθpκp)π̂t − κpπ̂t−1

]
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LHS + βθpκpπ̂t =
θp

1− θp

[
− βπ̂t+1 + (1 + βκp)π̂t − κpπ̂t−1

]
= (1− βθpm̂ct)

π̂t =
β

1 + βκp
π̂t+1 +

κp
1 + βκp

π̂t−1 +
1− θp
θp

1− βθp
1 + βκp

m̂ct

Since m̂ct = (1− α)ŵt + αr̂kt , finally one obtains:

π̂t =
β

1 + βκp
π̂t+1 +

κp
1 + βκp

π̂t−1 +
1− θp
θp

1− βθp
1 + βκp

(
(1− α)ŵt + αr̂kt

)
Wage equation:

∞∑
s=0

(θwβ)s
(
λ̂c,t+s + ˆ̃wt + κw(P̂t+s−1 − P̂t−1)− Ûl,t+s

)
= 0

for t: 1
1−βθw

(
ˆ̃wt − κwP̂t−1

)
=
∑∞
s=0(θwβ)s

(
Ûl,t+s − λ̂c,t+s − κwP̂t+s−1

)
for t+1: 1

1−βθw

(
ˆ̃wt+1 − κwP̂t

)
=
∑∞
s=0(θwβ)s

(
Ûl,t+1+s − λ̂c,t+1+s − κwP̂t+s

)
⇒

1

1− βθw

(
ˆ̃wt − κwP̂t−1

)
=
(
Ûl,t − λ̂c,t − κwP̂t−1

)
+ βθw ·

1

1− βθw

(
ˆ̃wt+1 − κwP̂t

)

ˆ̃wt − κwP̂t−1 = (1− βθw)
(
Ûl,t − λ̂c,t − κwP̂t

)
+ βθw

(
ˆ̃wt+1 − κwP̂t

)
ˆ̃wt − βθw ˆ̃wt+1 = −βθwκw(P̂t − P̂t−1) + (1− βθw)

(
Ûl,t − λ̂c,t

)
ˆ̃wt − βθw ˆ̃wt+1︸ ︷︷ ︸

LHS

= −βθwκwπ̂t + (1− βθw)
(
Ûl,t − λ̂c,t

)

ŵt = (1− θw) ˆ̃wt + θw(ŵt−1 + κwπ̂t−1 − π̂t − ẑ∗t ) implies:

ˆ̃wt =
1

(1− θw)

[
ŵt − θw(ŵt−1 + κwπ̂t−1 − π̂t − ẑ∗t )

]
thus:

LHS = ˆ̃wt − βθw ˆ̃wt+1

=
1

1− θw

[
ŵt − βθwŵt+1

− θw(ŵt−1 − βθwŵt)− θw(κw(π̂t−1 − βθwπ̂t)− (π̂t − βθwπ̂t+1)− (ẑ∗t − βθwẑ∗t+1))
]

=
1

1− θw

[
(1 + β(θw)2)ŵt − βθwŵt+1 − θwŵt−1

+ θw[(1 + βθwκw)π̂t − βθwπ̂t+1 − κwπ̂t−1] + θw[ẑ∗t − βθwẑ∗t+1]
]

LHS + βθwκwπ̂t =
1

1− θw
{

(1 + β(θw)2)ŵt − βθwŵt+1 − θwŵt−1 + θw[(1 + βθwκw)π̂t − βθwπ̂t+1 − κwπ̂t−1]

+ θw[ẑ∗t − βθwẑ∗t+1]
}

= (1− βθw)
(
Ûl,t − λ̂c,t

)
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Finally it can be written:

ŵt =
θw

1 + β(θw)2
[βŵt+1 + ŵt−1 − (1 + βκw)π̂t + βθwπ̂t+1 + κwπ̂t−1

−ẑ∗t + βθwẑ
∗
t+1 +

1− θw
θw

(1− βθw)
(
Ûl,t − λ̂c,t

)]
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Appendix C

Dynare code

1 var lam c R Q i rk L Pi w y k z

2 eps_d eps_l eps_i eps_g

3 GDP CONS INV WG CPI WIBOR;

4

5 varexo mu_z mu_d mu_l mu_i mu_g mu_r;

6

7 parameters alpha beta delta phi_w phi_p c_ss g_ss

8 h varphi S theta_w theta_p kappa_w kappa_p kappa_r phi_Pi phi_y

9 gamma_obs rho_z rho_d rho_l rho_i rho_g ;

10

11 // Calibrated parameters

12 alpha = 0.33;

13 beta = 0.995;

14 delta = 0.025;

15 phi_w = 3;

16 phi_p = 3;

17 c_ss = 0.582;

18 g_ss = 0.2;

19

20 model(linear);

21

22 // Endogenous variables

23 # gamma = 1 + gamma_obs;

24 (gamma -beta*h)*(gamma -h)*lam = -(gamma ^2+ beta*h^2)*c + gamma*h*c(-1) + beta*gamma*h*c(+1)

25 - gamma*h*z + beta*gamma*z(+1) + (gamma -h)*gamma*eps_d - (gamma -h)*beta*h*eps_d (+1)

;

26 R = lam - lam (+1) + Pi(+1) + z(+1);

27 Q = - R + Pi(+1) + (1-delta)*beta/gamma*Q(+1) + (1-(1-delta)/gamma)*beta*rk(+1);

28 i = 1/(1+ beta)*(i(-1)-z)+ beta /(1+ beta)*(i(+1)-z(+1)) + (Q+eps_i)/((1+ beta)*S*(gamma ^2))

;

29 rk = L + w + z - k(-1);

30 R = kappa_r*R(-1) + (1-kappa_r)*( phi_Pi*Pi + phi_y*y) + mu_r;
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31 y = c_ss*c + (1-c_ss -g_ss)*i + g_ss*eps_g;

32 k = (1-delta)/gamma*(k(-1)-z) + (1-(1- delta)/gamma)*(i+eps_i);

33 y = (1-alpha)*L + alpha*(k(-1)-z);

34 Pi = beta /(1+ beta*kappa_p)*Pi(+1) + kappa_p /(1+ beta*kappa_p)*Pi(-1)

35 + (1-theta_p)*(1-beta*theta_p)/theta_p /(1+ beta*kappa_p)*((1- alpha)*w + alpha*rk);

36 w = theta_w /(1+ beta*( theta_w ^2))*( beta*w(+1) + w(-1)

37 - (1+ beta*kappa_w)*Pi + beta*theta_w*Pi(+1) + kappa_w*Pi(-1)

38 - z + beta*theta_w*z(+1) + (1-theta_w)*(1-beta*theta_w)/theta_w *(eps_d+eps_l+varphi*

L-lam));

39

40 // Exogenous processes

41 z = rho_z*z(-1) + mu_z;

42 eps_d = rho_d*eps_d(-1) + mu_d;

43 eps_l = rho_l*eps_l(-1) + mu_l;

44 eps_i = rho_i*eps_i(-1) + mu_i;

45 eps_g = rho_g*eps_g(-1) + mu_g;

46

47 // Measurement equations - quaterly data

48 GDP = 100*(y-y(-1)+z+log(gamma));

49 CONS = 100*(c-c(-1)+z+log(gamma));

50 INV = 100*(i-i(-1)+z+log(gamma));

51 WG = 100*(w-w(-1)+z+log(gamma));

52 CPI = 100*Pi;

53 WIBOR = 100*(R+log(gamma/beta));

54

55 end;

56

57 varobs GDP CONS INV WG CPI WIBOR;

58

59 // steady;

60 //check;

61

62 estimated_params;

63

64 h, beta_pdf , 0.70, 0.10;

65 varphi , gamma_pdf , 2.00, 0.70;

66 S, gamma_pdf , 6.00, 1.50;

67

68 theta_w , beta_pdf , 0.60, 0.10;

69 theta_p , beta_pdf , 0.60, 0.10;

70 kappa_w , beta_pdf , 0.50, 0.15;

71 kappa_p , beta_pdf , 0.50, 0.15;

72

73 kappa_r , beta_pdf , 0.80, 0.08;

74 phi_Pi , gamma_pdf , 1.70, 0.15;

75 phi_y , gamma_pdf , 0.125 , 0.065;

76

77 gamma_obs , gamma_pdf , 0.008, 0.0015;

78
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79 rho_z , beta_pdf , 0.40, 0.1;

80 rho_d , beta_pdf , 0.70, 0.1;

81 rho_l , beta_pdf , 0.70, 0.1;

82 rho_i , beta_pdf , 0.70, 0.1;

83 rho_g , beta_pdf , 0.70, 0.1;

84

85 stderr mu_z , inv_gamma_pdf , 0.0050 , inf;

86 stderr mu_d , inv_gamma_pdf , 0.0050 , inf;

87 stderr mu_l , inv_gamma_pdf , 0.0050 , inf;

88 stderr mu_i , inv_gamma_pdf , 0.0075 , inf;

89 stderr mu_g , inv_gamma_pdf , 0.0100 , inf;

90 stderr mu_r , inv_gamma_pdf , 0.0030 , inf;

91

92 dsge_prior_weight , uniform_pdf ,,, 0, 2;

93

94 end;

95

96 estimation(datafile=data , xls_sheet=quarterly , xls_range=B2:G65 ,

97 plot_priors =0, mode_file=dsge_v9_est_m6_mode ,

98 mh_replic =500000 , mh_drop =0.5, mh_jscale =0.45, mode_compute =1, mode_check ,

99 bayesian_irf , dsge_var , first_obs=5, order =1);
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Appendix D

Charts and figures

Figure D.1: Historical transformed variables
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Figure D.2: Prior and posterior densities - structural parameters

Note: grey line - prior distribution, black line - posterior distribution, vertical green dashed line - posterior mode.
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Figure D.3: Prior and posterior densities - stochastic processes

Note: grey line - prior distribution, black line - posterior distribution, vertical green dashed line - posterior mode.
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Figure D.4: Bayesian Impulse Response Function - preference shock.

Note: bold solid line - IRF from the DSGE, grey area - 90% interval for the DSGE,
bold dashed line - IRF from the DSGE-VAR, dashed lines - 90% bands for the DSGE-VAR.

Figure D.5: Bayesian Impulse Response Function - labour supply shock.

Note: bold solid line - IRF from the DSGE, grey area - 90% interval for the DSGE,
bold dashed line - IRF from the DSGE-VAR, dashed lines - 90% bands for the DSGE-VAR.
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Figure D.6: Bayesian Impulse Response Function - investment shock.

Note: bold solid line - IRF from the DSGE, grey area - 90% interval for the DSGE,
bold dashed line - IRF from the DSGE-VAR, dashed lines - 90% bands for the DSGE-VAR.

Figure D.7: Bayesian Impulse Response Function - government spending shock.

Note: bold solid line - IRF from the DSGE, grey area - 90% interval for the DSGE,
bold dashed line - IRF from the DSGE-VAR, dashed lines - 90% bands for the DSGE-VAR.
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